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Abstract

Maps of the distribution of medically-important ticks throughout the US remain lacking in spatial 

and temporal resolution in many areas, leading to holes in our understanding of where and when 

people are at risk of tick encounters, an important baseline for informing public health response. 

In this work, we demonstrate the use of Bayesian Experimental Design (BED) in planning 

spatiotemporal surveillance of disease vectors. We frame survey planning as an optimization 

problem with the objective of identifying a calendar of sampling locations that maximizes 

the expected information regarding some goal. Here we consider the goals of understanding 

associations between environmental factors and tick presence and minimizing uncertainty in high 

risk areas. We illustrate our proposed BED workflow using an ongoing tick surveillance study 

in South Carolina parks. Following a model comparison study based on two years of initial 

data, several techniques for finding optimal surveys were compared to random sampling. Two 

optimization algorithms found surveys better than all replications of random sampling, while a 

space-filling heuristic performed favorably as well. Further, optimal surveys of just 20 visits were 

more effective than repeating the schedule of 111 visits used in 2021. We conclude that BED 

shows promise as a flexible and rigorous means of survey design for vector control, and could help 

alleviate pressure on local agencies by limiting the resources necessary for accurate information 

on arthropod distributions. We have made the code for our BED workflow publicly available on 

Zenodo to help promote the application of these methods to future surveillance efforts.
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1. Introduction

Tickborne diseases have tripled in the last two decades and now make up more than 75% of 

reported vector-borne infections in the United States (Rosenberg et al., 2018). The continued 

geographic expansion of several medically important tick species is likely a key contributor 

to this sharp increase in tickborne disease incidence (Kugeler et al., 2015; Sonenshine, 

2018). An accurate understanding of the spatial and temporal distribution of medically 

important ticks is a crucial first step to informing when and where people are at risk, and 

forms the basis of public health programs for the diagnosis and prevention of tickborne 

diseases (Eisen and Paddock, 2021). However, maps of tick distributions throughout the 

US are lacking in spatial and temporal resolution, and often depend on outdated sources, 

disparate sampling techniques, or otherwise biased data (Schulze et al., 1997; Wisely 

and Glass, 2019). Statistical models are therefore important tools for explaining factors 

associated with tick presence and filling gaps in existing distribution maps. However, 

the reliability of model predictions are critically dependent on the amount and quality of 

input data at an appropriate spatiotemporal scale (Kugeler and Eisen, 2020). An area with 

particularly limited knowledge of current tick distributions is the southeastern US, where 

local resources for monitoring and control are scarce and less than 10% of vector control 

agencies perform tick surveillance of any kind (Dye-Braumuller et al., 2022; Mader et al., 

2021).

In addition to learning from existing data, a further use of tick distribution models is 

informing future surveillance and control efforts by anticipating the value of future sampling 

locations. For example, more fine-grained sampling might follow an initial surveillance 

effort focused on a subset of areas of potentially high risk (Diuk-Wasser et al., 2010). 

Though usually such sampling decisions are made in an ad hoc manner, a decision-theoretic 

alternative is to assign a score to potential sampling times and locations and attempt to find 

visits maximizing some objective function (Dorazio and Johnson, 2003). Deciding future 

visits for surveillance or control efforts may then be framed as an optimal experimental 

design problem, where a calendar of sampling times and/or locations is chosen to maximize 

their information content or increase the impact of vector control measures (Case et 

al., 2022; Reich et al., 2018). Because observational studies of tick distributions involve 

complex interactions between variable environmental conditions, population dynamics, and 

the collection method used, it is important to employ design criteria that are robust to 

uncertainty in model parameters and experimental conditions (Pronzato and Walter, 1985).

Thanks to computational advances in recent decades, Bayesian inference has become 

popular for model fitting in ecology and epidemiology (Parent and Rivot, 2012). The 

advantages of Bayesian inference include a complete treatment of model uncertainty 

through providing posterior distributions of plausible model parameters and predicted tick 

distributions, and the ability to incorporate entomological or medical knowledge through 
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prior beliefs. For experimental design, the Bayesian paradigm provides a framework that 

is robust to system uncertainty and flexible for tailoring novel design criteria to specific 

challenges in public health (Diggle et al., 2021; Ryan et al., 2016).

Implementing Bayesian Experimental Design (BED) involves three general steps (Fig. 1). 

First, a statistical model is chosen based on its suitability to explain any existing survey 

data, resulting in a posterior distribution that represents how much we have learned based on 

this initial survey. Here, learning indicates our level of confidence about inferred parameters 

in the model, as well as our confidence in predicted tick distributions. While we focus on 

binary presence/absence data in this work, other metrics such as tick abundance may be 

used with an appropriate choice of model. Next, a utility function is developed to score 

potential future survey schedules based on the expected quality of new information. How 

new information is quantified depends on the specific goals of surveillance, for example 

whether the objective is to reduce some form of uncertainty or to maximize the number 

of sites positive for ticks. Finally, the space of possible designs is searched for highly 

informative survey schedules using optimization. The output of these three steps is then 

a calendar of sampling times and locations that can be directly implemented as a future 

surveillance effort. Note that while an initial dataset is not required for BED, we frame the 

method for the situation where preliminary data are available from previous surveillance 

efforts. This information can help inform an appropriate model choice, and more effectively 

differentiate high quality designs (Ryan et al., 2015; Zhang, 2006).

In this work, we outline principles for how BED can be incorporated in spatiotemporal 

surveys to maximize the value of vector surveillance and control efforts, and we illustrate 

their use for an ongoing tick surveillance effort of South Carolina state parks and other 

public lands. We compare the ability of different search techniques to find survey schedules 

that maximize utility based on two design criteria tailored to different priorities of vector 

surveillance. In addition to informing future data collection efforts, we demonstrate how 

high utility designs can be further analyzed to provide novel insight into sources of 

uncertainty in tick distributions.

2. Methods

2.1. Data collection and preparation

Data originated from an existing state-wide tick surveillance project in South Carolina city 

and state parks, beginning in March 2020. The project also included submissions from South 

Carolina animal shelters and citizen scientists, though these data were not used in this study. 

Here we used data from 2020 to 2021 state and city parks, with observations in 30 distinct 

parks spanning 26 counties from March to December. Sampling was relatively opportunistic; 

more visits took place between March and August compared to later months, and 4 parks 

were visited at least 10 times over the two years while 3 parks were visited just once. In 

total, 59 distinct visits occurred in 2020, and 111 visits occurred in 2021.

A scientific collecting permit from the SC Department of Parks, Recreation, & Tourism 

was secured for both years, and written permission was granted from the appropriate 

municipal government for city parks. The coordinates for each site were selected near the 
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entrance to each park in a forested area for consistency. Tick collections were performed 

following recommended CDC Ixodidae surveillance guidelines (Centers for Disease Control 

and Prevention, 2021). In brief, tick traps consisting of a 0.61m2 muslin cloth baited with 

1.5-lb dry ice each were placed in parks along hiking and nature trails and left in the park for 

1.5–2 h. Additionally, tick drags were performed along hiking and nature trails. Tick drags 

were constructed with a 1.22-m x 1.52-m white duck canvas attached to a 1.22-m wooden 

dowel, with zinc washers as weights on the bottom. Each collection visit consisted of ten 

tick traps and a 30 min timed tick drag (sixty 30-second segments to regularly check for 

ticks) to ensure that the recommended surface area of at least 750 m for host-seeking ticks 

was surveyed (Centers for Disease Control and Prevention, 2021).

Ticks were processed at the Laboratory of Vector-Borne and Zoonotic Diseases at the 

University of South Carolina, where they were identified to species, sex, and life stage. 

Morphological identifications were conducted with multiple dichotomous keys (Clifford 

and Anastos, 1960; Keirans and Durden, 1998; Keirans and Litwak, 1989). The response 

outcome for each visit was then recorded as a binary variable of presence/absence for 

each species, where presence indicates nymphs were found with at least one of the two 

sampling methods. Amblyomma maculatum, Ixodes brunneus, and I. kearnsi (formerly I. 
affinis (Nava et al., 2023)) were present in only 3, 5, and 12 of these visits, respectively. 

Therefore to improve the quality of model predictions, A. maculatum was removed from all 

further analyses, and the Ixodes species were aggregated into a single Ixodes spp. group. 

Amblyomma americanum was found in 45% of the 170 visits, Ixodes spp. was found in 

24%, and Dermacentor variabilis in 8%.

2.2. Environmental risk factors

Several meteorological and geographic variables were selected as potential covariates of tick 

occurrence based on tick ecology and previous modeling studies (Hahn et al., 2016; Lippi et 

al., 2021). Land cover and forest canopy data were obtained from the USGS 2019 National 

Land Cover Database (Dewitz, 2021), while elevation and meteorological variables were 

obtained from PRISM (Oregon State University, 2014). Included meteorological variables 

were monthly total precipitation, monthly average of the daily maximum temperature, 

monthly average of the daily minimum temperature, average daily minimum temperature 

in January, and monthly average of the daily average humidity, calculated from average 

daily temperature and average dew point temperature (Alduchov and Eskridge, 1996). Since 

we are interested in making predictions for future years, 30-year meteorological monthly 

normals were used, defined as the value for each month on average over the last 30 years. 

The continuous covariates were centered and scaled prior to all statistical analyses, and the 

monthly minimum temperature was removed due to multicollinearity.

2.3. Modeling tick distributions using Bayesian regression

Complete mathematical definitions for the model specification and experimental design 

procedure are given in the Supplemental Methods. We used a hierarchical, mixed-effects 

framework, where correlations between the observed tick distributions and various 

environmental, spatial, and temporal effects are captured (Parent and Rivot, 2012). The 

probability of encountering a tick of species j, in a visit to site i during month t, is therefore a 
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function of the 7 environmental covariates, the survey location, and the month the visit took 

place.

To find a model parsimonious with the collections data, 28 candidate models were 

constructed from simplifying different components of the full model. Each of the 

environmental, spatial, and temporal model components were considered either shared or 

different between tick groups, and linear or spline-based functions were considered for the 

environmental effects. Models were compared based on the Deviance Information Criterion, 

which measures a model’s goodness-of-fit to the data and robustness, while penalizing 

model complexity. The best performing model was used in all subsequent analyses.

2.4. Experimental design for vector surveillance

Considering the limited capacity of vector control agencies and researchers, a reasonable 

surveillance strategy should consider the feasibility and convenience of sampling sites while 

allowing sufficient diversity to realistically be able to extrapolate to the region of interest. 

To maintain this balance, we restricted future sampling to a set of 57 sites on public land 

across South Carolina, of which the 30 sites visited in the initial data were a subset. These 

candidate sites included all 47 South Carolina state parks and historic sites, 6 locations 

within national parks and wildlife refuges, and 4 other locations present in the initial data. 

Collection visits were delineated monthly and could take place in any month, resulting in a 

space of 684 possible visits (i.e. month-location pairs) which may be added to a candidate 

survey.

In BED, potential outcomes (i.e. presence/absence of ticks) resulting from a proposed design 

are assigned a utility, or a score based on the quality of new information provided by that 

outcome. Since the outcome of a visit is uncertain prior to sampling, the utility of the 

design is then averaged over the posterior predictive distribution of possible outcomes, i.e. 

predictions given the initial survey data (Fig. 1, step 2). To score potential outcomes, two 

design criteria were considered. First was a form of Bayesian d-optimality, which quantifies 

the volume of uncertainty in the posterior covariance matrix for the environmental effects 

(Chaloner and Verdinelli, 1995). This criterion measures how much has been learned about 

the environmental effects as a whole, which grants a fuller representation of uncertainty 

compared to examining the variance of each effect individually. Broadly speaking, this 

criterion will reward surveillance schedules that maintain a diverse range of environmental 

conditions. A second criterion was then designed to improve the reliability of prediction 

maps in regions where risk of exposure is highest. Here we assigned utility based on the 

maximum reduction in standard deviation of risk from the initial dataset among high risk 

areas, where high risk areas were defined as any point in the spatiotemporal prediction map 

with expected risk greater than 0.75 for at least one tick species. These high risk points 

were concentrated along the southern shoreline of the state in the months of March through 

May. The maximum rather than mean reduction in uncertainty was chosen for greater variety 

compared to the first criterion, and represents an “all-in” approach where visits are chosen 

to target uncertainty at a specific part of the prediction map. In contrast, the d-optimality 

criterion is a more “big picture” goal that reflects learning across all visits.
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Equipped with a predictive model and utility function, the space of possible designs can be 

searched to optimize utility (Fig. 1, step 3). Because Bayesian design criteria are available 

in closed form only in the simplest cases, mathematical formulae for the utility function are 

not available and numerical methods are typically used. This design space is far too vast to 

test the utility of most designs, therefore specialized search techniques are needed to find 

designs of high quality (Ryan et al., 2016). We implemented two optimization algorithms 

– first was a simulated annealing algorithm, a common stochastic search technique which 

incrementally adds and removes visits to a design while avoiding local minima, and second 

was an exchange algorithm which rotates through neighboring months and sites until no 

neighbors improve utility (Reich et al., 2018). We also considered two heuristics to choose 

designs based on characteristics suspected to lead to high utility, while requiring fewer 

computational resources than optimization. The first chose visits with the highest predicted 

variance given the existing collections data, and the second was a space-filling design that 

spread visits evenly over time and prohibited visiting any two parks less than 25 km away 

from each other (Chipeta et al., 2017). We then compared these four search strategies to 

random sampling for an increasing sample size from 5 to 20 visits, as well as to several 

repeated sampling scenarios which were constructed by repeating aspects of the initial 

collections data. The repeated sampling schemes were to visit the 30 distinct sites from 

the initial collections in June, to visit these 30 sites in December, and to repeat the exact 

schedule performed in 2021.

3. Results

In the model comparison study, the model with lowest DIC included linear environmental 

effects shared between species, and both spatial and temporal effects separate for each 

species, although several alternative models performed nearly as well (Figure S1). 

The posterior environmental and temporal effects from the best performing model are 

summarized in Fig. 2. Daily maximum temperature and January minimum temperature 

both had a strong positive association with tick presence, while precipitation had a strong 

negative association, as coefficients for these variables had over 95% of the posterior mass 

above/below zero. Relative humidity, elevation, and a Mixed Forest land cover also appear 

negatively associated with tick presence. The coefficients for land cover had particularly 

high variance, likely due to less data being available for any single land cover class. 

Spatiotemporal prediction maps throughout South Carolina for each tick group are shown in 

Fig. 3, while the average predicted risk of visits in the initial collections data are compared 

to the true presence/absence in Figure S2. There appears to be reasonably good agreement 

between the expected risk and the observed data. The average predicted risk for both A. 
americanum and Ixodes spp. was high in the southeast of the state, though in different 

months, while average risk was consistently low for all species in the northwest. Ultimately, 

Fig. 3 shows considerable model uncertainty in tick presence remains throughout much of 

the state, illustrating the importance of continued surveillance.

Fig. 4 summarizes the results from the simulation study, with utilities of the designs 

produced by each search method compared to random sampling. For the d-optimality 

criterion, both of the optimization algorithms and the space-filling heuristic were able to 

find designs better than any random sample, and had very similar performance for all sample 
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sizes, although the space-filling strategy was less computationally expensive. The variance 

heuristic performed comparably or worse than random sampling. The repeated sampling 

designs based on the initial schedule also had much lower utility relative to their larger 

sampling budget – revisiting all 30 previously visited sites in June was generally worse than 

choosing 20 visits uniformly at random, as well as a schedule of just 10 visits found using 

exchange. Repeating all 111 visits from 2021 had lower utility than designs of 20 visits. 

Results were similar for the second criterion of maximum variance reduction in high risk 

areas, although space-filling was less effective than exchange and simulated annealing. Here, 

repeating the 111 visits from 2021 only slightly outperformed the best designs of just 20 

visits. For this criterion, the best design of 20 locations had an expected utility of 0.1, which 

amounts to a 30–50% reduction in uncertainty for a particular future visit.

To more concretely visualize the output of our experimental design pipeline, panels C and 

D of Fig. 4 show the spatiotemporal distribution of proposed visits for both design criteria, 

laid over the design of the initial surveillance data for comparison. There was almost no 

overlap between the initial visits and the proposed designs, with just three such occurrences 

across all design criteria and search algorithms. Similarly, identical visits were proposed by 

the different search techniques in only two instances. For both criteria, successful designs 

spread visits fairly evenly across months, although interestingly few visits were proposed 

in the late summer/fall for either criteria. In total over both criteria, January and December 

were the most sampled months while August had the least proposed visits. Over the course 

of the year, each strategy also proposed a balanced spread of locations across the state, 

although the middle of the state appears under-sampled relative to the number of parks that 

are located there.

To further gain a sense of what makes certain surveys better than others, the environmental 

conditions of each possible visit were then projected using Factor Analysis for Mixed 

Data (FAMD), a dimension reduction technique for continuous and categorical data (Pagès, 

2004). The associated covariates are embedded within the four most important dimensions 

and plotted in Figure S3, with the covariates selected by each of the search strategies 

highlighted. For the first criterion, the three successful strategies chose visits that spread 

covariates throughout the center of the two most important dimensions, while the variance 

heuristic placed points on the edges and far away from the observed data. For the second 

criterion the successful designs instead placed many more points in the bottom-right 

quadrant of the first and second dimensions, suggesting that a more specific combination 

of survey conditions were critical for maximizing information regarding certain high risk 

points, although the spread of designs in Fig. 4D makes clear that some sampling variability 

remains beneficial.

4. Discussion

Accurate information regarding the time and place of probable tick encounters is an essential 

first step to reducing the burden of tick-borne pathogens. Statistical modeling allows 

extrapolating available information to a wider scale, which in turn enables local vector 

control agencies to better direct critical resources. However, the reliability of such model 

predictions are critically dependent on the nature of available data. Combining a Bayesian 
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workflow and design of experiments is a principled approach to getting more out of data 

from existing surveillance efforts, and directing future efforts for the greatest effect. Thanks 

to advances in software and computing throughout the last decade, optimal Bayesian survey 

design is feasible to implement for a diverse array of researchers throughout epidemiology.

Our results for the application of scheduling monthly tick surveillance in public natural areas 

demonstrate large gains in information are possible through carefully chosen surveys. Even 

when restricting sampling to a limited number of locations, efficient survey design can make 

the difference for learning critical information and improving reliability of tick distribution 

maps. Although implementing an optimal surveillance design may require additional planing 

prior to sampling, the higher quality of information provided by such designs means that 

ultimately fewer visits are required to reach a certain level of confidence. Optimal sampling 

can therefore serve to reduce the overall resources necessary for effective surveillance.

Successful designs can also inform general practices for surveillance. For example, for 

the first design criterion based on environmental covariates, the success of a space-filling 

strategy shows that spreading future visits across time and space is more valuable than 

other intuitive options such as focusing sampling on specific months which were previously 

under-sampled. Because similar environmental conditions will tend to be clustered in time 

and space, spreading visits in this way will tend to spread design points evenly across 

covariate space as well, which is theoretically optimal with respect to the d-optimality 

criterion for simple logistic regression (Chaloner and Larntz, 1989). A similar takeaway 

regarding the second criterion of variance reduction among high risk points on the prediction 

map is that focusing sampling on months or parks also with high suspected risk is not 

an efficient strategy. Instead, effective surveys should avoid sampling redundancy and 

maintain a diversity of visits to identify remaining sources of uncertainty for these high 

risk predictions.

While we have emphasized finding efficient designs using optimization, a secondary 

takeaway from our analysis is that random sampling generally outperforms some common 

forms of convenience sampling, such as repeated sampling or sampling based on current 

uncertainty. This reinforces random sampling as a gold standard catch-all technique that 

is independent of the design criterion (Diekmann et al., 2007). Thus, although we have 

demonstrated that the most effective surveys for minimizing uncertainty in tick distribution 

maps must be found using optimization, random sampling could still be a reasonable choice 

when the design goals of future analyses are unclear, or for a preliminary round of sampling 

when little existing information is available.

Analysis of the initial survey data during model comparison provides insight into the current 

tick patterns in natural areas throughout the southeastern US, while also demonstrating 

further data are needed. The top performing models all included a temporal trend for each 

tick species (Figure S1, and the posterior marginals for each trend show strong seasonal 

patterns (Fig. 2B). These residual trends could indicate contributions from variables not 

included in the analysis such as isothermality (Hahn et al., 2016), or from seasonality in 

ecological factors such as host availability. Another explanation for this temporal trend is our 
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use of 30-year normals data, which ignores climatic differences between the two years in the 

initial data that could lead to a temporal offset in risk between years.

The best suited models all included a term for spatial variability for each tick species, which 

has previously been deemed important for modeling I. scapularis density (Diuk-Wasser 

et al., 2010). Overall, the large variance in both spatial and temporal effects among top 

models suggests uncertainty in tick presence is due to a combination of unmeasured 

environmental effects, population dynamics, and variability inherent to all methods of tick 

collection in a natural environment (Rynkiewicz and Clay, 2014). It is also interesting that 

the top performing model did not include species-dependent nor non-linear effects with 

the environment, as the importance of such non-linear environmental effects are frequently 

stressed when modeling tick distributions (Elias et al., 2021; Hahn et al., 2016). This is 

likely due in part to the relatively limited geographic range of our data.

Our prediction map of expected probability of tick presence in South Carolina generally 

agrees with previously published results, although data at a similar spatial and temporal 

scale are limited. For I. scapularis, county level data show 30% of South Carolina counties 

had an established tick presence by 2015, most of which were in the southeast region of the 

state (Eisen et al., 2016), while models calibrated to the same data predicted suitability in the 

center of the state as well (Hahn et al., 2016). County-level establishment of A. americanum 
follows a similar pattern as I. scapularis (Springer et al., 2014), although predictions based 

on that data indicated all counties were highly suitable (Springer et al., 2015). This previous 

prediction of A. americanum in the northwest of the state is in contrast with our findings, as 

the species was never encountered during initial data collection in the region, and our model 

predicted low risk there in all months.

The application of BED for vector surveillance used in this work focused on establishing 

tick presence in public natural areas, although we note that the framework used here can 

be applied to other metrics such as abundance with minimal changes. While measuring tick 

presence or abundance in outdoor recreational areas such as state parks is a widely used 

method for establishing human exposure risk (Falco and Fish, 1989; Hassett et al., 2022), 

and for detecting expanding ranges of ticks and tick-borne pathogens (Johnson et al., 2017), 

the reliability of such data for predicting individualized risk of infection is unclear. For 

Lyme disease, it has been suggested that private property is the main source of exposure 

to host-seeking nymphs (Eisen and Eisen, 2016; Mead et al., 2018). The infection status of 

ticks is also a critical source of information, although the importance of measuring density 

of infected ticks compared to tick prevalence likely depends on the study area. At the county 

level, nymph density has been found ineffective for predicting Lyme disease incidence in 

low incidence areas, but is comparable to density of infected nymphs in high incidence 

counties (Pepin et al., 2012). Another limitation with our assumed data collection method 

is that patterns of tick presence and abundance will vary greatly over the span of a state 

park. Thus, establishing the distribution of ticks is ultimately just a single step to any 

comprehensive strategy for vector surveillance and control.

The BED procedure illustrated here suggests several avenues for future statistical and 

computational development. First, additional work is needed to better understand optimal 

Case et al. Page 9

Ticks Tick Borne Dis. Author manuscript; available in PMC 2024 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



designs for the types of mixed-effects models used in this and other studies of species 

distributions, as research combining BED and mixed-effects models is scarce (Reich et al., 

2018; Ryan et al., 2015). Second, specialized optimization strategies for finding optimal 

survey schedules should be developed, as spatiotemporal survey design presents distinct 

challenges such as incomplete control over the environmental conditions available among 

possible visits. Another possibility is to employ adaptive sampling, where locations are 

visited in smaller batches and the data collected from each iteration are able to inform 

sampling in future batches, although updating data sequentially leads to additional logistical 

constraints during surveillance (Case et al., 2022; Chipeta et al., 2016). A final avenue 

for future work is in the choice of design criteria, which may change depending on the 

specific goals of the analysis. While we simply restricted designs to a certain number of 

visits, researchers with different goals or specific resource limitations could employ criteria 

that account for distance traveled, availability of materials, or density of human traffic at a 

particular park and month. More broadly, a general procedure for design criteria that adapt 

to the current needs of local vector control agencies would allow widespread application of 

experimental design strategies at a fine-grained spatiotemporal scale.

5. Conclusions

In this work, we have outlined Bayesian Experimental Design as a formal approach to 

the surveillance of disease vectors. Compared to classical methods of experimental design, 

a Bayesian framework provides a natural way to incorporate initial survey data, while 

rigorously accounting for remaining uncertainty in model predictions. We applied a BED 

workflow to an ongoing tick surveillance study in South Carolina state parks, and found 

that surveys optimized to satisfy specific goals were universally more efficient than simple 

random sampling. These results demonstrate the promise of optimal survey design for 

researchers and vector control agencies to maximize the impact of the data they collect.
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Fig. 1. 
Implementing Bayesian Experimental Design in spatiotemporal surveillance. A motivating 

example with a single environmental covariate is shown, with the goal of establishing 

environmental factors associated with tick presence. Top: a small design space consisting of 

four possible survey locations (e.g. parks) and four timepoints (e.g. months). A surveillance 

schedule is a collection of visits (time-location pairs) and amounts to arranging points 

in design space. The changing values of the environmental covariate x are shown for 

each survey point, and the values of x corresponding to a design d are mapped to the 

1-dimensional covariate space, indicated by arrows for each d. Bottom: in step 1, a response 

yinit and associated x values from an initial survey dinit are shown in covariate space, two 

candidate models are compared, and a posterior distribution for the selected model is fit. In 

step 2, the utility of some candidate design is defined as an average over future outcomes 

and the amount of new information that would be provided by each outcome. Here a 

Bayesian d-optimality criterion is used, which scores outcomes based on the volume of 

confidence ellipsoids approximating the updated posterior distribution. In step 3, finding an 

effective design is treated as an optimization problem over the space of candidate designs. A 

generic stepwise procedure is shown, and the best design found after 100 iterations is then 

examined. In accordance with BED theory, this design spread additional points throughout 

the middle of covariate space, while putting special attention at the extreme x ≈ 2 which was 

under-sampled in the initial survey.
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Fig. 2. 
Posterior environmental and temporal effects from the initial survey. Results are shown for 

the best-performing model fit to the initial survey data from 2020 to 2021. All results are 

in log-odds scale. (A) Marginal posterior means for each species intercept and coefficient 

for the environmental variables are shown as points, while 50% and 95% Highest Posterior 

Density Intervals are shown as purple bars. (B) Mean temporal trend for each tick group 

is given by dashed lines, along with full marginal posterior densities for each month/tick 

group.
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Fig. 3. 
Spatiotemporal mean and standard deviation of risk. Results are shown for the best-

performing model fit to the initial survey data. Posterior marginals for the probability of 

tick presence were computed along a 16 km grid of locations across South Carolina, and 

summarized by the mean (top) and standard deviation (bottom).
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Fig. 4. 
Comparing search methods for effective designs of tick surveillance. The utility of designs 

found using different search strategies are compared to 20 replications of random sampling 

(light blue distributions) for different sample sizes, and to different convenience/repeated 

sampling schemes (dashed lines; number of visits in parentheses). (A) Results from 

optimizing the d-optimality criterion for the environmental covariates. (B) Results using the 

maximum variance reduction criterion among high risk areas. (C-D) Proposed schedules of 

20 visits for the 3 effective search strategies are shown across space and time. The schedule 

of 170 visits used for the initial survey data is shown as gray points.
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